
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Application of Combinatorics in Big Two
Bob Kunanda - 13523086

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia
1bobkunanda@gmail.com, 13523086@std.stei.itb.ac.id

Abstract— This paper explores the use of combinatorics and

Monte Carlo simulations to analyze and calculate the probabilities

of various card combinations in a hand. Combinatorics provides

precise mathematical equations for simple cases, while Monte

Carlo simulations are employed to address the complexity of

larger, more intricate scenarios, such as calculating the likelihood

of straights, flushes, full houses, and other hands in a deck. The

paper also introduces practical implementations of these models,

with code designed to compute results efficiently. By combining

theoretical foundations with computational methods, the work

aims to offer tools and insights that can be extended for

applications like AI model development for the strategic card game

Big Two. The equations and Python code presented provide a

foundational framework that balances accuracy and efficiency,

making them adaptable for both academic and practical uses.

Keywords—Big Two, card combinations, combinatorics, Monte

Carlo simulation

I. INTRODUCTION

Big Two (also known as Capsa or Cus in Indonesia) is a

shedding-type card game of Cantonese origin. The game is

popular in Asia, and it is played by 2 to 4 players with a 52-card

deck. The goal of the game is to be the first to play all the cards

by forming valid combinations, such as singles, pairs, triple, or

poker-style hands.

Each player is given 13 random sets from a deck of shuffled

cards. In Big Two, cards are ranked both by their values and

suits. The ranking order is as follows value wise from lowest to

highest would be 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A, 2 and suits

wise it would be Diamonds (♦), Clubs (♣), Hearts (♥), Spades

(♠). There are 4 valid combinations: singles or any single card,

pairs or two cards of the same rank, triple, and five-card poker

hands like straight, flush, full house, four-of-a-kind (plus one

single), or straight flush.

Image 1. Rules of Big Two, taken from [1]

The game starts with whoever got the smallest value card

(3♦), then each subsequent player must play a higher value

card or combination than the one before with the same number

of cards. When all but one player passed in succession, the

round is over and used card are put in the waste pile. Then the

next round starts with the last player playing.

II. THEORETICAL FOUNDATION

A. Combinatorics

Combinatorics is a branch of mathematics that studies the

counting, arrangement, and combination of objects. It focuses

on finding efficient methods to count and organize discrete

structures without the need to enumerate all possible

configurations. Combinatorics has applications in many fields,

including computer science, cryptography, and statistical

physics. It provides tools for solving problems related to

counting, probability, and the arrangement of sets of objects.

B. Principle of Inclusion-Exclusion

Combinatorics is a branch of mathematics that studies the

counting, arrangement, and combination of objects. It focuses

on finding efficient methods to count and organize discrete

structures without the need to enumerate all possible

configurations. Combinatorics has applications in many fields,

including computer science, cryptography, and statistical

physics. It provides tools for solving problems related to

counting, probability, and the arrangement of sets of objects.

For any finite sets 𝐴1, 𝐴2, ⋯ , An:

∣ 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑛 ∣ ∑|𝐴𝑖|

𝑛

𝑖=1

− ∑ |𝐴𝑖 ∩ 𝐴𝑗|

1≤𝑖<𝑗≤𝑛

+

∑ |𝐴𝑖 ∩ 𝐴𝑗 ∩ 𝐴𝑘|

1≤𝑖<𝑗<𝑘≤𝑛

− ⋯ + (−1)𝑛+1|𝐴1 ∩ 𝐴2 ∩ ⋯ ∩ 𝐴𝑛|

C. Permutation

Permutations are a fundamental concept in combinatorics,

referring to the arrangement of objects in a specific order. The

study of permutations helps in understanding how different

sequences can be formed from a given set of elements.

Permutations are widely used in various fields, including

mathematics, computer science, and operations research.

A permutation of a set is an arrangement of its elements in a

specific sequence or order. If we have a set of 𝑛 distinct

elements, the number of possible permutations of these

elements is denoted as 𝑛! (n factorial), which is the product of

all positive integers up to

mailto:1bobkunanda@gmail.com
mailto:13523086@std.stei.itb.ac.id

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

𝑛: 𝑛! = 𝑛 × (𝑛 − 1) × (𝑛 − 2) × ⋯ × 2 × 1

C. Combination

Combinations are a key concept in combinatorics, referring

to the selection of items from a larger set where the order of

selection does not matter. The study of combinations helps in

understanding how different groups can be formed from a

given set of elements. Combinations are widely used in various

fields, including mathematics, statistics, and computer science.

A combination of a set is a selection of its elements without

regard to the order in which they are selected. If we have a set

of 𝑛 distinct elements, and we want to choose 𝑟 elements from

this set, the number of possible combinations is denoted as

(
𝑛

𝑟
) (read as "n choose r") and is given by the formula:

𝑛

𝑟
=

𝑛!

𝑟!(𝑛−𝑟)!
 where 𝑛! (n factorial) is the product of all positive

integers up to 𝑛.

D. Monte-Carlo simulation

Calculating probabilities in complex card games like

determining the likelihood of specific outcomes is challenging

because of the large number of possible hands, overlapping

patterns, and interdependence among cards. The combinatorial

nature of such problems often involves evaluating subsets,

accounting for overlaps, and ensuring no double-counting,

which becomes computationally intractable as the number of

cards increases. This huge and complex game requires a

simulation to identify the probability.

III. METHODOLOGY

To simplify equation the total number of cards in a hand will

be written as 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒)and total number of card of

a certain suit in a hand will be written as 𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡).

To simplify the equations, we will introduce specific notations

for better clarity and manageability. The total number of cards

of a particular rank or value in a player's hand will be denoted

as 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒)_ , where 𝑐𝑎𝑟𝑑 𝑣𝑎𝑙𝑢𝑒 represents the

specific rank (e.g., Ace, 2, 3, etc.). Similarly, the total number

of cards of a particular suit in a player's hand will be expressed

as 𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡), where 𝑐𝑎𝑟𝑑 𝑠𝑢𝑖𝑡 corresponds to one of

the four suits (e.g., Hearts, Diamonds, Clubs, Spades). These

notations allow us to succinctly represent counts in a player's

hand for both specific values and suits, making it easier to

construct equations and analyze scenarios systematically.

A. Combinations of Pairs

To define the combination of pairs in a single hand of 13

cards, we consider the range of card values, with 3 being the

smallest value card and 2 being the largest value card (often

referred to as the "Big Two" card game ranking). The formula is

constructed to iterate through all possible pairs of cards,

symbolizing the combination of cards that can form pairs.

𝑡𝑜𝑡𝑎𝑙𝑝𝑎𝑖𝑟 = ∑ 𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

2
)

2

𝑖=3

The number of combinations of a pair equation, when

implemented in Python, would look something like this:

hands_to_int is a function that converts the hand from its

original values (e.g., rank and suit representations) into an

array of integers representing the hand. This array facilitates

easier mathematical operations and comparisons when

calculating combinations. The function typically uses a

mapping of card ranks (e.g., { '3': 3, ..., '2': 15}) to integers and

processes each card in the hand to replace its rank with the

corresponding integer value. This makes it possible to evaluate

combinations efficiently, especially when paired with libraries

like math for generating pairs, triples, or other subsets from the

hand.

Image 2. Number of combinations of pairs code, taken from [2]

B. Combinations of threes

Like combinations of pairs, the combinations of threes can be

defined using a similar approach but with modified conditions

and combination parameters. Specifically, the total number of

triples can be calculated using the formula:

𝑡𝑜𝑡𝑎𝑙𝑡𝑟𝑖𝑝𝑙𝑒 = ∑ 𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

3
)

2

𝑖=3

Combinations for threes just takes the program from

combinations of pairs and change the condition and the

combination parameters.

Image 3. Number of combinations of triple code, taken from [2]

C. Combinations of Straight

To calculate the combinations of straights in two different

cases, no separate straight and separate straight, the logic

becomes increasingly complex as we consider both

overlapping and non-overlapping sequences. Here's how the

explanation can be expanded for clarity

1. No Separate Straight

The case of no separate straight refers to the scenario

where only a single straight exists, and it consists of more

than five consecutive cards. In this situation, the straight

is contiguous, with all its values forming a single

sequence without any gaps or interruptions. The equation

for this is:

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = 𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 = ⋯

= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4)

, ∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)

4

𝑘=0

𝑓𝑖𝑛𝑖𝑠ℎ−4

𝑖=𝑠𝑡𝑎𝑟𝑡

Here’s a breakdown of the terms:

• 𝑣𝑎𝑙𝑢𝑒𝑖: Represents the rank of the 𝑖-th card.

• 𝑠𝑡𝑎𝑟𝑡: The rank of the first card in the straight.

• 𝑓𝑖𝑛𝑖𝑠ℎ: The rank of the last card in the straight.

• ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)
4
𝑘=0 Computes the total

combinations by multiplying the counts of cards

for each consecutive rank forming the straight.

This ensures that only one continuous straight is

counted, avoiding any separation or gaps. The condition

(𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 = ⋯ = 𝑣𝑎𝑙𝑢𝑒𝑖+4 −
4)enforces the sequence.

2. Separate Straight

The case of separate straight refers to the presence of two

independent straights that are not connected or

overlapping. This scenario involves a more complex

calculation, as it requires identifying two distinct groups

of consecutive cards within the hand. The equation for

this is:

𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 = 𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 = ⋯

= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4)

∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖+𝑘)

4

𝑘=0

𝑓𝑖𝑛𝑖𝑠ℎ1−4

𝑖= 𝑠𝑡𝑎𝑟𝑡1

+ ∑ ∏ 𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑗+𝑚)

4

𝑚=0

𝑓𝑖𝑛𝑖𝑠ℎ2−4

𝑗= 𝑠𝑡𝑎𝑟𝑡2

The equation essentially iterates over all possible

positions for the two separate straights, ensuring no

overlap, and multiplies the combinations for each

straight.

The number of combinations of straights can be simplified

in implementation to make the code more readable and

maintainable. While the mathematical approach might be

detailed and complex, simplifying the logic and focusing on

clear iteration and conditions will produce the same results

without altering correctness.

Image 4. Number of combinations of straight code, taken from [2]

D. Combinations of Flush

To calculate the combinations of flushes, the formula

involves determining the total number of ways to select 5 cards

from each suit and summing them up. The equation can be

written as:

𝑡𝑜𝑡𝑎𝑙𝑓𝑙𝑢𝑠ℎ = 𝐶 (
𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑑𝑖𝑎𝑚𝑜𝑛𝑑)

5
) + 𝐶 (

𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑐𝑙𝑜𝑣𝑒𝑟)

5
)

+ 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(ℎ𝑒𝑎𝑟𝑡)

5
) + 𝐶(

𝑡𝑜𝑡𝑎𝑙𝑠𝑢𝑖𝑡(𝑠𝑝𝑎𝑑𝑒)

5
)T

 The number of combinations of flushes puts each number of

cards from each suit to an array to be processed further.

Image 5. Number of combinations of flush code, taken from [2]

E. Combinations of Full House

This equation uses 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟, 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒, and 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 to

symbolize the number of pairs, triples, and fours in a deck. to

determine all possible full houses. The unsimplified version

breaks down each component of the calculation for clarity and

readability, even though it can be expressed in a more compact

form.

𝑡𝑜𝑡𝑎𝑙𝑓𝑢𝑙𝑙 ℎ𝑜𝑢𝑠𝑒 = (𝐶(4
2
) × 𝐶(3

3
) + 𝐶(4

3
) × 𝐶(3

2
)) ×

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 𝐶(4
3
) × 𝐶(4

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
) +

𝐶(3
3
) × 𝐶(3

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
) + (𝐶(4

3
) × 𝐶(2

2
) ×

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 𝐶(3
3
) × 𝐶(2

2
) × 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒) × 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟

Breakdown of the Terms

First Term:

This part accounts for full houses formed by a triple from a

three-of-a-kind and a pair from a four-of-a-kind. 𝐶(4
2
): Ways

to choose 2 cards from a four-of-a-kind to form a pair.

𝐶(3
3
) ways to choose all 3 cards from a triple to form the three-

of-a-kind. As well as full houses formed by a pair from a three-

of-a-kind and a triple from a four-of-a-kind. 𝐶(4
3
): Ways to

choose 3 cards from a four-of-a-kind to form a three-of-a-kind.

𝐶(3
2
) ways to choose all 2 cards from a triple to form pair.

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠: Total combinations for selecting

these cards.

Second Term:

Accounts for full houses are formed by selecting a pair and

a triple from two different four-of-a-kinds.

𝐶(4
3
) × 𝐶(4

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
): Permutations of two distinct

four-of-a-kinds.

Third Term:

Accounts for full houses are formed by selecting pairs and

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

triples from two different three-of-a-kinds.

𝐶(3
3
) × 𝐶(3

2
) × 𝑃(

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
) : Permutations of two distinct

three-of-a-kinds.

Fourth Term:

Combines cases where pairs are formed using two cards

from a pair and triples from a three-of-a-kind or four-of-a-

kind.

• 𝐶(4
3
): Ways to choose 3 cards from a four-of-a-

kind.

• 𝐶(3
3
): Ways to choose 3 cards from a triple.

• 𝐶(2
2
): Ways to form a pair from an existing pair.

• 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 and 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒: Counts of four-of-a-

kinds and three-of-a-kinds.

The simplified version aggregates the terms with

precomputed coefficients for clarity:

𝑡𝑜𝑡𝑎𝑙𝑓𝑢𝑙𝑙ℎ𝑜𝑢𝑠𝑒 = 18𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒 × 𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 +

24𝑃 (
𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠

2
) + 3𝑃 (

𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒

2
)

+(4𝑐𝑜𝑢𝑛𝑡𝑓𝑜𝑢𝑟𝑠 + 𝑐𝑜𝑢𝑛𝑡𝑡𝑟𝑖𝑝𝑙𝑒) × 𝑐𝑜𝑢𝑛𝑡𝑝𝑎𝑖𝑟

 This code for number of combinations of full house used the

unsimplified version of the equation to make it readable.

Image 6. Number of combinations of full house code, taken from [2]

F. Combinations of Four of a Kind

The combination of four of a kind by using an equation is as

follows.

𝑡𝑜𝑡𝑎𝑙𝑓𝑜𝑢𝑟 𝑜𝑓 𝑎 𝑘𝑖𝑛𝑑 = ∑ 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

4
)2

𝑖=3 × 𝐶(9
1
)

• 𝐶(
𝑡𝑜𝑡𝑎𝑙𝑣𝑎𝑙𝑢𝑒(𝑖)

4
): The number of ways to select all 4

cards of a single rank.

• 𝐶(9
1
)): The number of ways to select 1 additional card

from the remaining 9 ranks (to make the total hand

size 5 cards).

• ∑2
𝑖=3 : Iterates over all ranks to calculate this for

each possible four of a kind in the deck.

The code implementation of number of combinations of four

of a kind is as follows.

Image 7. Number of combinations of four of a kind code, taken from [2]

G. Combinations of Straight Flush

The formula for calculating the total number of straight

flushes considers sequences of cards within each suit that form

a consecutive straight. A straight flush requires 5 or more cards

of the same suit in consecutive ranks. To account for all

possible straight flushes in a deck, the calculation needs to

evaluate each suit independently and consider all valid ranges

of consecutive cards.

𝑡𝑜𝑡𝑎𝑙𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑓𝑙𝑢𝑠ℎ

= 𝐼𝑓 (𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 = ⋯
= 𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4),

𝑓𝑖𝑛𝑖𝑠ℎ𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 𝑠𝑡𝑎𝑟𝑡𝑑𝑖𝑎𝑚𝑜𝑛𝑑 − 3 +

𝑓𝑖𝑛𝑖𝑠ℎ𝑐𝑙𝑜𝑣𝑒𝑟 − 𝑠𝑡𝑎𝑟𝑡𝑐𝑙𝑜𝑣𝑒𝑟 − 3 +

𝑓𝑖𝑛𝑖𝑠ℎℎ𝑒𝑎𝑟𝑡 − 𝑠𝑡𝑎𝑟𝑡ℎ𝑒𝑎𝑟𝑡 − 3 +

𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑝𝑎𝑑𝑒 − 𝑠𝑡𝑎𝑟𝑡𝑠𝑝𝑎𝑑𝑒 − 3

Explanation of Terms

Straight Flush Condition:

• The condition 𝑣𝑎𝑙𝑢𝑒𝑖 = 𝑣𝑎𝑙𝑢𝑒𝑖+1 − 1 = ⋯ =
𝑣𝑎𝑙𝑢𝑒𝑖+4 − 4 ensures that the cards form a valid

sequence of 5 or more consecutive values.

Range Calculation:

• Each suit (diamonds, clubs, hearts, spades) is evaluated

independently.

• 𝑠𝑡𝑎𝑟𝑡𝑠𝑢𝑖𝑡: The rank of the first card in the sequence for

the specific suit.

• 𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑢𝑖𝑡: The rank of the last card in the sequence for

the specific suit.

• 𝑓𝑖𝑛𝑖𝑠ℎ𝑠𝑢𝑖𝑡 − 𝑠𝑡𝑎𝑟𝑡𝑠𝑢𝑖𝑡 − 3: This calculates the number

of valid straight flushes within the suit. Subtracting 3

accounts for the fact that the minimum sequence length

is 5 cards.

Summing Across Suits:

• Each suit's valid straight flush combinations are

summed to get the total number of straight flushes in the

deck.

The code implementation for calculating the total number of

straight flush combinations is as follows. The logic has been

slightly adjusted for better readability and maintainability while

ensuring that the results remain consistent with the original

approach. This version focuses on clarity, making it easier to

understand the process of iterating through each suit, checking

for valid sequences, and calculating the total number of straight

flushes across all suits. Below is the Python code that efficiently

computes the combinations without compromising on accuracy.

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

Image 8. Number of combinations of straight flush code, taken from [2]

G. Monte-Carlo Simulation

Because of the complexity involved in counting all possible

outcomes in a deck of cards, a Monte Carlo simulation offers a

practical solution to estimate probabilities. This approach uses

random sampling to approximate results, by passing the need

for exhaustive enumeration of all combinations. Although the

results from simulation are not exact, they become increasingly

accurate as the number of iterations grows. By running the

simulation on a large scale, such as one million randomized

hands, the differences between simulated and exact results

remain minimal, providing a reliable estimate.

The simulation is implemented using the random library in

Python to generate hands and calculate the desired outcomes.

By efficiently managing randomness and focusing on specific

conditions, the code ensures clarity while maintaining

performance. With this design, it can be easily extended or

modified to suit different card games or custom deck

configurations. Below is the Python code, demonstrating the

use of Monte Carlo simulation for solving complex card

probability problems.

Image 9. Monte-Carlo simulation code, taken from [2]

The results are stored in a result array, where each index

corresponds to the count of a specific hand type observed

during the simulation. The mapping is as follows:

• result[0]: Number of pair occurrences

• result[1]: Number of triple occurrences

• result[2]: Number of straight occurrences

• result[3]: Number of flush occurrences

• result[4]: Number of full house occurrences

• result[5]: Number of four-of-a-kind occurrences

• result[6]: Number of straight flush occurrences

Here is one of the test results from running the simulation:

The unique thing I found is that the chances of a flush to

exist in a hand is larger than a straight even though the game

rule favours the flush to be a higher ranking than the straight.

The game rule seems to be following poker rules which only

account 7 cards (5 river cards and 2 player cards) that made the

chances of straight appearing to be bigger.

V. CONCLUSION

Combinatorics are incredibly useful for calculating

combinations or possibilities in simple scenarios, providing

precise results through mathematical equations. However, for

more complex problems, such as evaluating all potential

outcomes in card games, simulations like the Monte Carlo

simulation become essential. These simulations provide

approximate but highly accurate results by leveraging random

sampling over large datasets. While this discussion focuses

specifically on the combinations of cards in a hand, the

equations and code provided here are designed to be adaptable

and extendable. It is my hope that these tools can serve as a

foundation for building an AI model or bot for strategic card

games like Big Two, enabling more sophisticated decision-

making and gameplay.

VI. APPENDIX

Source code used for the functions and simulation code of

Big Two: https://github.com/BobSwagg13/Application-of-

Combinatorics-in-Big-Two

Video link of explaining the code:

https://youtu.be/WbO6TasjtX4

VII. ACKNOWLEDGMENT

I would like to express my deepest gratitude to God for the

blessings and guidance that enabled me to complete this paper.

https://github.com/BobSwagg13/Application-of-Combinatorics-in-Big-Two
https://github.com/BobSwagg13/Application-of-Combinatorics-in-Big-Two
https://youtu.be/WbO6TasjtX4

Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025

My heartfelt thanks go to my family, whose unwavering support

and encouragement have been instrumental in making this work

possible.

I extend my sincere appreciation to my lecturers, Ir. Rila

Mandala, M.Eng., Ph.D., and Dr. Ir. Rinaldi Munir, M.T., for

introducing me to the fascinating world of combinatorics and

inspiring me throughout this academic journey.

Additionally, I would like to thank my grandfather and

friends, who introduced me to the wonderful game that served

as the foundation of this study. Their enthusiasm and shared

passion for this game were crucial in shaping the ideas presented

in this paper.

Finally, I hope that this paper can serve as a valuable

reference or tool for others, contributing to the development of

similar studies or projects in the future.

REFERENCES

[1] Big2.com.au. (2015). Rules of Big Two. Retrieved December 23, 2024,

from https://www.big2.com.au/rules.php . [Accessed: Dec. 24, 2024]..
[2] BobSwagg13, Application of Combinatorics in Big Two: Analyzing Card

Groupings. GitHub Repository. [Online]. Available:

https://github.com/BobSwagg13/Application-of-Combinatorics-in-Big-
Two-Analyzing-Card-Groupings- . [Accessed: Dec. 26, 2024].

[3] R. Munir, Kombinatorika Bagian 1, 2024. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-
Kombinatorika-Bagian1-2024.pdf. [Accessed: Dec. 24, 2024].

[4] R. Munir, Kombinatorika Bagian 2, 2024. [Online]. Available:

https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-
Kombinatorika-Bagian2-2024.pdf. [Accessed: Dec. 24, 2024].

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 27 Desember 2024

Bob Kunanda

13523086

https://github.com/BobSwagg13/Application-of-Combinatorics-in-Big-Two-Analyzing-Card-Groupings-
https://github.com/BobSwagg13/Application-of-Combinatorics-in-Big-Two-Analyzing-Card-Groupings-
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/18-Kombinatorika-Bagian1-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf
https://informatika.stei.itb.ac.id/~rinaldi.munir/Matdis/2024-2025/19-Kombinatorika-Bagian2-2024.pdf

